
Sum of the exterior angles of convex polygon.

The sum of the measures of the exterior angles of a convex polygon, one at each vertex, is 360.

If...

Then...
$$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 + m \angle 5 = 360$$

In the figure, $m \angle 1 = 5x + 11$, $m \angle 4 = 3x + 1$ $m \angle 6 = 8x - 19$, and $m \angle 7 = 3x - 13$.

$$m \angle 2 = 69$$
 $m \angle 3 = 119$

$$m \angle 5 = 39$$
 $m \angle 8 = 133$

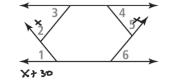
mc 1+ m c4+m26+m27=360

$$5x+11+3x+1+8x-19+3x-13=360$$
 $19x-20=360$
 $19x=380$
 $19x=380$

Suppose $\angle 1 \cong \angle 3$, $m\angle 1 = 3x$, and $m\angle 2 = 2x$. What is the measure of each exterior angle?

1 2x 2 3x 4

ml3= 67.5°


m24= 50°

m 65=50°

SOLUTION

$$m \leq 1 + m \leq 2 + m \geq 3 + m \geq 4 + m \geq 5 = 360$$
 $3x + 2x + 3x + 90 + 90 = 360$
 $8x + 180 = 360$
 $8x = 180$
 $8x = 180$
 $x = 22.5$
 $x = 32.5$
 $m \leq 2 = 360$
 $m \leq 360$

4. Suppose $\angle 1 \cong \angle 3 \cong \angle 4 \cong \angle 6$, $\angle 2 \cong \angle 5$, and $m\angle 3 = m\angle 2 + 30$. What is $m\angle 4$?

The measure of an exterior angle of a regular polygon is given. Find the number of sides of the polygon.

$$30 = \frac{360}{30} = 12$$
-gon 20 $\frac{360}{20} = 18$ -gon 5 $\frac{360}{5} = 72$ -gon

The sum of the measure of the interior angles of a convex polygon is given. Find the number of sides in each polygon. S = 180(n-2)

$$S = 2160$$

$$S = 6120$$

$$S = 4140$$

$$\frac{2160 = 180(n-2)}{180}$$

$$12 = n-2$$